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ABSTRACT 

We describe the top condensate scheme for electroweak symmetry break- 
ing, and some associated issues. We discuss the issue of predictability, 
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naive Nambu-Jona-Lasinio approximation to be small. 
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1. Introduction 

Many physicists believe that the true symmetry breaking of the electroweak in- 
teractions involves a dynamical mechanism in analogy to the BCS theory. The most 
celebrated mechanism is that of technic&r’ and involves a new strong interaction 
that pairs techniquarks to form a weak isospin-l/2 condensate. This is, in the earliest 
version, a well understood dynamical mechanism for electroweak symmetry breaking, 
by analogy to the well-known chiral symmetry breaking in QCD, but it does not ac- 
count for the masses of quarks and leptons. To give masses to the elementary fermions 
one must extend technicolor to a larger, broken symmetry group, known as “extended 
technicolor”r and here one encounters difficulties. The key problem is that quarks 
cannot be too heavy in extended technic&r schemes without simultaneously gener- 
ating large, unwanted AS = 2 interactions, thus too large a Kr. -KS mass difference. 
A naive estimate of the upper limit on a quark mass in standard extended technic&n 
is m cuorb s 100 MeV. In a more recent version, “walking extended technicolor,“s one . 
might obtain larger masses, msmrk s 10 GeV. 

The fact that the top quark is an elementary fermion with a mass scale of order 
the electroweak symmetry breaking scale suggests a dramatic new possibility: the 
symmetry breakdown of the standard model may be a dynamical mechanism which 
intimately involves the top quark. To implement this idea we will postulate new 
dynamics in which the top quark forms a condensate, for example (ELLta + h.c.), which 
has the correct electroweak isospin-i quantum number. Thus, in this scheme the top 
quark itself plays the role of a techniquark. 

There is clearly much uncertainty in the specific new dynamics leading to top 
quark condensation. As a first step toward a full theory one can implement directly a 
Nambu-Jona-Lasinio (NJL) mechanism in which an effective SU(3) x SU(2) x U(1) 
invariant four-fermion interaction associated with a high energy scale, A - G-*/r, is 
postulated’~s: 

t = &necis + G(~;ha)(&itJ (1) 

where i runs over sum indices, (a, b) run over color indices, and ~lrinctis contains the 
usual gauge invariant fermion and gauge boson kinetic terms. There is no elementary 
Higgs field in C. If G > 0 the interaction is attractive, and for sufficiently large G 
the four-fermion interaction triggers the formation of a low energy condensate, (Et), 
which breaks SU(2) x V( 1) -+ U(1). 

The bootstrapping of the symmetry breaking mechanism to the top quark pro- 
duces the requisite Nambu-Goldstone bosons associated with spontaneous symmetry 
breaking (which ultimately become the longitudinal components of W and Z), and 



-2- FERMILAB-Pub-92/19-T 

also a composite particle which behaves identically to a fundamental Higgs boson at 
low energies. 

By virtue of its economy this theory leads to new predictions which are testable in 
the near future. In particular, we are able to derive renormalization group improved 
predictions for mtop and rn~;~r, (the composite Et Higgs boson) in this scheme, and 
we find, not surprisingly, that mtg, is of order the weak scale. The results are very 
weakly dependent upon A; for example, with A - 1Or5 GeV we find in the minimal 
scheme mtop z 230 GeV and rn~irr, - 260 GeV.s Yet another result, albeit not 
experimentaly accessible in the foreseeable future, is that the nonminimal coupling of 
the composite Higgs boson to gravity is determined, and we find the conformal value, 
< = l/6 as a general consequence of compositeness in the NJL mode1.s 

Thus, this model differs from technicolor at the outset in implying that at least 
one fermion, that associated with the electroweak condensate, must be heavy while 
the others are light. The usual Cabibbo-Kobayashi-Maskawa mixing angle structure 
and light fermion mass spectrum are readily accomodated, but predictions of mixing 
angles and the light quark masses are not derivable until one specifies the dynamics 
at the scale A more precisely. The usual one-Higgs-doublet standard model emerges 
as the low energy effective Lagrangian, but with new constraints that lead to the 
nontrivial predictions for mtopr mEirp, and <. 

The NJL model is conventionally treated in a large N,, approximation, keeping 
only the effects of fermion loops. However, one can equivalently analyze the model 
using the renormalization group (RG) exclusively. This involves studying the effective 
Lagrangian and the evolution of its parameters as we vary the scale of physics, p. At 
the high energies, ~1 - G-‘/z our theory is described by the four-fermion interaction 
of es.(l). At low energies it contains a dynamical, composite weak isodoublet Higgs 
boson with self interactions and a Higgs-Yukawa coupling to the top quark. We must 
then understand how to “match” the low energy Lagrangian onto the high energy 
Lagrangian. The conditions that define this matching are called the “compositeness 
conditions.“s~’ The compositeness conditions are equivalent to boundary conditions 
near the scale A on the renormalization group equations. With the correct com- 
positeness conditions we easily recover the conventional NJL results in the large-N 
limit. 

The compositeness conditions are actually more powerful; they may be applied to 
the bll theory, which goes beyond the largeN approximation and includes the effects 
of gauge boson and internal Higgs boson lines, etc. Certain special renormalization 
group trajectories, i.e., those satisfying the compositeness conditions, are thereby 
associated with the existence of composite structure. These lead to the precise RG 
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improved predictions for mtop, nz~i~~,, and f, which are very insensitive to the scale 
of new physics, A N G-1’a.s 

The composite theory is effectively a strongly coupled (H&s-Yukawa and quartic 
Higgs couplings) standard model near the scale A. The low energy predictions that 
emerge are found to be governed in each case by infrared renormalization group fixed 
points. *$ In particular, compositeness is associated with the infrared fixed points as 
formulated in ref.[9]. These fixed points are universal low energy values of the coupling 
constants that arise from arbitrarily large values at high energies. Because the low 
energy values are insensitive to a wide range of initial values, the compositeness 
predictions are robust, and largely insensitive to the precise details of the high energy 
theory. For example, the top quark is predicted to lie near 230 GeV with the Higgs 
near 260 GeV, and f = l/6 for a composite scale within several orders of magnitude 
of, A N 10’s GeV. 

How robust are the compositeness conditions and hence the predictions of a theory 
as in eq.( l)? One can follow Suzuki’o and consider the sensitivity of the results to the 
presence of generic higher dimension operators. Again, owing to the infrared fixed 
points, the results are found to be very insensitive to higher dimension operators (in 
ref.[ll] arbitrarily large coefficients of these operators are allowed and it is claimed 
that the infrared predictions of the composite theory can be modified; we will return 
to this issue in section 4.2). It is important to realize, however, that the theory of 
eq.(l) cannot be viewed as fundamental. One is therefore challenged to construct 
models in which eq.(l) emerges as the effective theory at the scale A. With a wide 
class of such models we can compute the strength of irrelevant operators. 

To get a sense of the expected size of these additional effects in a realistic scheme, 
and to have a concrete realization (albeit not necessarily the most elegant), we wilI 
give a discussion of a “topcolor” model in analogy to minimal technicolor.la While 
minimal technicolor is a theory which naturally breaks SU(2) x U(1) but leaves 
the fermions massless, minimal topcolor breaks the electroweak interactions with a 
dynamical top condensate, while leaving all other quarks and leptons massless. This 
may be a better point of departure for the construction of extended models in which 
all quarks and leptons receive masses, however this is a new subject and we will not 
pursue the development of detailed schemes in this paper. 

In the end we face the fundamental problem of “naturalness,” i.e., how to evade 
significant fine-tuning of the theory. Two avenues have evolved: (1) SUSY generzdiza- 
tions of the minimal modelI in which supersymmetry protects the gap equation from 
having to fine-tune large quadratic divergences; and (2) Fourth generation schemesI’ 
in which the scale A is simply taken near N 1 TeV. Unfortunately, the limitations of 
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space will preclude a review of these, and we refer the reader to the references. 

2. Analysis in Fermion Bubble Approximation 

We can see explicitly the connection with the standard model of the theory defined 
in eq.( 1) by using a Yukawa form of the four-fermion interactions as defined at the 
cut-off scale A, through the help of a static, auxiliary Higgs field, H. We can rewrite 
eq.( 1) as: 

L = ISkiwtis + (TLtRH + h.c.) - miHtH (2) 

If we integrate out the field H we produce the four-fermion vertex as an induced 
interaction with G = l/m:. Note that only nontachyonic rni > 0 implies an attractive 
interaction and allows the factorization in this form. 

Eq.(2) is the effective Lagrangian on a scale A. To obtain the effective Lagrangian 
on a scale p < A in the fermion bubble approximation we integrate out the fermion 
field components on scale p + A as in Fig.( 1): 

---o--. ‘)-J 
/’ 

6; 
\ ,I’ \. 

Figure (1): Block-spin renormalization group including only fermion loops 

The full induced effective Lagrangian at the scale p then takes the form: 

- 
L: = -Ckinetis + ‘3LtRH + h.c. + ALg.aune 

+ZJ#,HI’ - m;HtH - $(HtH)’ - &RHtH (3) 

where D, is the gauge covariant derivative and all loops are now to be defined with 
respect to a low energy scale p. Here A&,, contains the fermion loop contribution 
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to the renormalization of the gauge coupling constants. We include an induced non- 
minimal coupling of the Higgs boson to gravity, I.” A direct evaluation of the induced 
parameters in the Lagrangian gives as in Fig.( 1): 

z H = &log(A’/$); m& = m; - $$(A2 - $) 

XII = $og(A’/p’); 50 = +-& log(Az/p2). 

The Lagrangian of eq.(3) is, apart from normalization, exactly the same as the usual 
low energy standard model, except that the induced parameters, 2~ and X0, and <,, 
are determined. Note that they all have an explicit dependence upon A, vanishing 
when /I -t A. 

We emphasize that the effective theory applies in either the broken OP unbroken 
phases. The broken phase is selected by demanding that m& < 0 for scales p << A, 
thus requiring that m~-2N,Aa/16?ra < 0. This is equivalent to tuning the gap equation 
to produce the low energy dynamical symmetry breaking, i.e., G > G, = 8nafNCAa 
since G = l/m:. On the other hand, for positive rn& as /J + 0 the theory remains 
unbroken (this is equivalent to a subcritical four-fermion coupling constant, G 5 G.) 
and a massive Higgs boson doublet remains in the spectrum as a composite state. 

Let us bring the effective Lagrangian of eq.(3) into a conventionally normalized 
form: 

L = Lkimtie + gt$LtRH + h.c. + ALgauge 

+ID,HI= - =;H’H - ;(H’H)’ - (RH’H 

by resealing the field H ---t HI&. We then find: 

g: = l/Z+, = 16~‘/N,log(A”/$) 

iG& = mgjzfi 

A = X,/Z:, = 32n’/N,log(A’/$) 

t = IO/&I = 116 

(5) 

(6) 

These are the physically normalized coupling constants, and after fine-tuning the 
low energy value of %jj to obtain the spontaneously broken phase, the remaining 
predictions of the model are contained entirely in gt, X (and [) as we will see below. 
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The compositeness of the Higgs boson essentially implies the results that gr and X 
become singular as p --+ A (while t remains constant and equal to its conformal value 
of l/6). We will refer to these as the “compositeness conditions.” 

Now, to obtain the usual phenomenological results of the NJL model we examine 
the low energy Higgs potential from eq.(5) with p = rut: 

V(H) = -5i;z,~t~ + +(H+H)’ - (gtTLtRH + h.c.) 

Let us assume that zn < 0 so the neutral Higgs field develops a VEV: Re(H”) = 
v+d/fi. In the standard model we assume that r has been fine-tuned to the physical 
value of v2 = 1/2fiGr = (175)’ GeV. 

Therefore we find the top mass: 

mt = gtv; (8) 

and the C$ mass: 
m; = 23x (9) 

and so: 
m;Jmf = 2A/gf = 4 (10) 

where we use the explicit results of eq.(6) for X/g: = 2. This is the fan&r NJL 
result, m+ = 2mt. Moreover, we have: 

2 = m;/g; = m; & ln(APlm,a) = 2;GF 
which is equivalent to the prediction obtained from a direct fermion bubble approx- 
imation computation of the decay constant. We have seen that the RG directly and 
simply reproduces the result of a “brute force” summation of fermion bubbles. The 
result t = l/6 is also seen readily in the differential renormalization group.s 

3. Fully Improved Renormalization Group Solution 

3.1 Infrared Fized Points 

To obtain the full renormalization group improvement over the Nambu-Jona- 
Lasinio model we may utilize the compositeness boundary conditions on gt and X and 
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the fvlZ &functions (we’ll neglect light quark masses and mixings) of the standard 
model. To one-loop order we have: 

16~’ &a = (N.’ - l)gs’ - $2 - Ed) gr (12) 

and, for the gauge couplings: 

16x’ 
a -gi = -q g;3 

L?ln/J 

with 

cl=---EN. 1 6 9 g’ 
,,2-4N. 

6 3 g’ 
cs=ll-!N 

3 g 

(13) 

(14) 

where Nr is the number of generations and t = In p. 

The precise value of the top quark mass is determined by running g&) down 
from a given compositeness scale A at which g*(A) = co, or in practice, is large. 
The evolution ends when the mass-shell condition g,(m,)u = mt is reached. We will 
not discuss possible low energy corrections associated with the extrapolation of the 
symmetric three-point function to a zero-momentum Higgs line. 

The nonlinearity of eq.(12) focuses a wide range of initial values into a smsll range 
of final low energy results.*~* The solution for m p”.,?k = gt(,u)v is shown in Fig.(5) for 
A = 10” GeV (case A) and A = 10’s GeV (case B) respectively. This is a “quasi” 
infrared fixed point, which would be an exact fixed point if gs were constant. The 
fixed point is a reflection of approximate scale invariance (vanishing p function) of 
the theory as we tune the gap equation to produce mt < A. The scale invariance is 
explicitly broken by Apon. 

The quasi-fixed point behavior implies that mt is determined up to O(lnlnA/mt) 
sensitivity to A. In Table I we give the resulting physical mtop obtained by a numerical 
solution of the renormalization group equations as a function of A. Note the sensitivity 
to A is reduced when the nontrivial IR fixed point is present. 
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Figure (2): Full RG trajectories as a function of scale p. (A) A = IO’s GeV; 

(B) A = 10” GeV. The composite trajectories diverge at the corresponding 

value of A. The predicted 7,Zqurk is controlled by the quasi-infrared fixed 

point and is very insensitive to A..s,s 

The Higgs boson mass will likewise be determined by the evolution of A now given 
by: 

a 167r’- 
alnp 

x = 12(x’ + (gt’ - A)X + B - gr*) (15) 

where: 

A = ;g12 + iga2; B = $1’ + ;g11g2 + iga4 (16) 
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As in the case of CJ~, we evolve X(p) from the compositeness scale A down to the 
weak scale with the compositeness boundary condition, X(/l + A) --t co. The joint 
evolution of gt and X to the RG fixed point is shown in Fig.(3), and rn~ is given in 
Table I including the full RG effects. 

Table I: Predicted mtop in three levels of increasingly better approximation 

as described in the text. “Fermion Bubble” refers only to the inclusion of 
fermion loops, equivalent to the conventional Nambu-Jona-Lasinio analysis, 

in which case fn~ = Zmt. “Planar QCD” includes additional effects of 

internal gluon lines. AU effects, including internal Biggs lines and electroweak 

corrections, are incorporated in the “Full RG” lines, and we include the 

ma results. Notice that the full nnomdization effects muse ?n~ # 2~72~. 
Results (“) are from Mahanta and Bsrri~s,‘~ and (b) are from ref.[S]. 

3.2 Sensitivity to Irrelevant Operators 

The action of the effective fixed point appears to make the top quark and Higgs 
boson mass predictions largely insensitive to the precise values of the coupling con- 
stant close to the scale A.**’ Indeed, there may be real physical effects which modify 
the high energy boundary conditions. These effects may be due to the presence of 
normally irrelevant, higher dimension operators, or higher order corrections to the 
four fermion interactions at the scale A which are not already contained in the full 
renormalization group analysis. The higher dimension operators were first considered 
by Su~uki’~ and his analysis has been generalized by Hasenfratz” et al. How sensi- 
tive is the infrared physics to these model-dependent effects at high energy? We will 
show that these “Suzuki effects” are in fact rather small for a reasonable range of the 
coefficients of these new operators. 

We take our starting point Lagrangian, es.(l), to be modified as 

L = -h~i.+G -$(D,?;)(D%J 
>( 

GgLib+ $~~Z(iR)(pq~~~) 
> 

(17) 
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~5 = hnetic + + $(D,v;)(D’th))Hi + /L.C. 
> 

- M,ZH’H (18) 

3- 

2- 

l- 

4 ,I,, 
II ” 8 I I ’ I I I’ 3 “I” 

/ 

’ ’ ’ ’ ’ ’ 1 ’ ’ 1 ’ ‘- 
0 1 2 3 4 6 

Figure (3): Full RG trajectories showing joint evolution of gt and A for 

various initial VFJUCS.~ Compositeness correaponda to large initial gr and A, 

and these are attracted toward the nontrivial IR fmed point (solid circle). 

Now, we perform the block-spin RG transformation as in section 2.1. we obtain 
the low energy effective Lagrangian in analogy with eq.(3): 

L = Lkirv& + (@itfl,Hi + h*C 

+&/D,XI* - M;H’H - ;(H’H)’ + 0(1/A’)... (19) 
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where now the parameters transform as: 

zH = i$ (In(+) - x +x*/8) 

X0 = $- 
( 
ln(A/p) - 2x + ix’ - ix3 + ix4 

and M,’ has additive terms which we will fine-tune as above. 
> 

(20) 

(21) 

To obtain the low energy predictions the renormalizaton group equations are mod- 
ifeid by physics near the scale A which depends upon x. At scales far below A the 
usual renormalization group equations apply with modifications of the high energy 
boundary conditions. We incorporate these effects by using exact results for large N 
at scales p N A as given in eqs.(20,21), but then use the full RG analysis at lower 
energies where the higher dimension operators decouple. 

The following procedure has been adopted to explore the sensitivity to x: (i) from 
p = A to p = p* = A/5 we use eq.(20) and eq.(21) directly to evolve 2~ and X0; (ii) 
from p = p* to p = mt we use the RG equations. The sensitivity of the low energy 
predictions is shown in Fig.(4) for the three cases: (1) fermion bubble approximation; 
(2) ladder QCD; and (3) full standard model. The most sensitive case is that of 
fermion loop approximation since we see that there is no real nontrivial fixed point 
to the RG equations in that case. For a wide range of x the planar QCD and full 
standard model predictions are very insensitive owing to the nontrivial fixed point for 
large gt which is rapidly approached. 

Recently Hasenfratz, et al. I1 have generalized the Suzuki analysis by including 
a complete set of higher dimension four fermion interactions. They show that these 
interactions can cause independent, finite shifts to the values of 2~ and X0. With 
arbitrarily large coefficients of the higher derivative interactions they claim that any 
physical prediction for mtop and maigg, can be obtained. They conclude that the 
top condensate theory is unpredictive and that a very light top quark is therefore 
consistent with the electroweak symmetry breaking coming only from short range 
interactions of the elementary fermions. 

The results of ref.[ll] are restricted to the fermion bubble approximation, in which 
they are true mathematically, but require unphysically large values of the coefficients 
of the new operators for their conclusions to apply. They require that the finite 
corrections at the high energy scale dominate the large logarithm arising from the 
evolution to the weak scale. Moreover, the focusing effects of the infrared fixed 
points are ignored by considering only the fermion bubble approximation, and these 
effects will further stabilize the predictions as we have seen previously. As we have 
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demonstrated, the actual results are, in fact, very insensitive to these corrections if 
the coefficients of the new operators are O(1). 

I I I I I ! I I I I I I , 1 I I 

400 - 
s, _-----. .-,--- -_________ --- ____------- 

Ladder QCD t 
-. 

‘. 
..__ 

-----_______----- __----I 
Nambu-Jona-L.&r& t 

.ii: 300 - 

3 Ladder QCD 6 

___________-___--__----------------- 

FulI RG 4 
Full RG t 

200 - 

Nambu-Jane-Larkdo , 

100 I I I I I,,,, I,, , , I,, , , 

-2 -1 0 1 2 

x 

Figure (4): Sensitivity of predicted mtop (solid lines) and mxisrs, (dashed 

lines) to d = 6 operator coefficient x. 

4. Topcolor: A Gauge Theory that makes a Top Condensate 

The ultimate issue of the size of the residual corrections to the leading four- 
fermion operator resides in the nature of the parent theory, which is valid on scales 
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> A. In a full, realistic theory in which the interactions at the scale A are generated 
dynamically we can hope to compute x. We turn to this possibility in the next 
section. In the following we consider one such model, and indeed it is found in ladder 
approximation that there are residual corrections, but these are very small (we find 
x w 0.1 rather than x N 10 which is required for any significant impact on the low 
energy predictions). We refer the reader to ref.[l2] for the details of this estimate. 

The interaction introduced in eq.(l) is clearly only an effective description of a 
more primitive theory. A Fierz rearrangement of the interaction leads to: 

wLh.MwJb)’ -+ -(&~r,;+~)(lnr’~tR) + 0(1/N) 

where N = 3 is the number of colors. This form strongly suggests a new gauge theory 
leading to a current-current form of the effective Lagrangian. We further note that: 
(i) this gauge theory must be broken at a scale of order A; (ii) it is strongly coupled 
at the breaking scale; (iii) it involves the color degrees of freedom of the top quark 
(or fourth generation fermions) in a manner analogous to QCD. The relevant models 
will involve the embedding of QCD into some large group G which is sensitive to the 
flavor structure of the standard model. 

Let us construct a minimal version of such a theory.‘l We presently seek a gauge 
interaction which leads to a term as in eq.(22) but which, like minimal technic&r, 
will leave the light quarks and leptons massless. A subsequent extension of the theory 
is required to give masses and mixing angles to light fermions, and we do not address 
this issue at present. Therefore, consider an extension of the standard model such 
that at scales p > A, we have U(1) x SU(2) L x SU(3)1 x SU(3)1. We assign the usual 
light quark and lepton fields to representations under (sum, SU(3)1, SU(3)z) such 
that they transform as singlets under the new SU(3)1, as follows: 

(T 4~ cc, 8)~ + (2,3,1) 

(b, =)L.; (% PIi2 (h, 711 + (2,171) 

UR, -At, CR, SR, bia --t (1,3,1) 

eR, PR, m, (~1 --t (l,l, 1) (23) 
while the top quark is a singlet under the first .5X(3)1 group: 

(t, bh --+ C&1,3); h + (L1,3) (24) 
This assignment is not anomaly free, and we can minimally realize all anomaly can- 
cellations provided we introduce the following electroweak singlet quarks: 

QR -+ (b&3); QL + (1,371) (25) 
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Both QR and QL have weak hypercharge Y = -2/3, hence electric charge Q = -l/3. 

Since we wish to break the symmetry SU(3)l x SU(3)2 + SU(3), at the scale A, 
we introduce a scalar (Higgs) field +t, which transforms as (1,3,%). By the simplest 
choice of the ip potential a VEV develops of the form: (‘P) = diag(h,A,A). This 
VEV breaks SU(3)l x SU(3)s to a massless gauge group SU(3). with gluons, Ai and 
a residual global SU(3)’ with degenerate, massive gauge bosons (“colorons”) B,“. 

Q must be given a large enough Dirac mass, 2 A, so that it does not further in- 
fluence the dynamical symmetry breaking. We invoke a large Higgs-Yukawa coupling 
of the Q field to the combination QLQ~. Thus, if we take: 

fiQ:‘rfiQm, + h.c. (26) 

then Q receives a mass of nA. A 1 ower bound on tz will be estimated below such 
that the Q field may be approximated as having decoupled at the scale A. It should 
be noted, however, that with the given the quantum numbers of &Q there is an 
intriguing possibility that in extensions of this scheme the qQ condensate may 

i, ) form dynamically breaking SU(3)l x SCJ(3)~ + 5X(3)., so t at an explicit @ field 
may not be required. For example, if we assign instead (c, 8)~ + (2,1,3), we find 
that anomaly cancellation requires the Q be a triplet with Y = O! Gauging this triplet 
with yet another SU(3)s allows a QCD-like chiral condensate of the form 

( > 
GQ which 

is (l,a, 3), and the symmetry breaks as described here. This model leads to a low 
energy two-Higgs doublet scheme. 

Returning to the simple example, let the coupling constants of S17(3)~ x SU(3)2 
be respectively hl and hs. Then the gluon (At) 

by 

and coloron (B,A) fields are defined 

A$ = cos BAA - sin BBA F 64 

A& = sin t9At + cos 9Bf (27) 

where: 
hl cm 9 = g3; hz sin9 = 93; (28) 

and thus: 

tan0 = hl/h2; 
1 

- = f+’ 
s3’ h: h: 

where g3 is the QCD coupling constant at A. In what follows we envision ha > hl 
and thus tan0 < 1 to select the top quark direction for condensation. The mass of 
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the degenerate octet of colorons is given by: 

MB = (#=)A = (&)A 

The SU(3). current will be the usual QCD current for all quarks while the SU(3)’ 
current (multiplied by its coupling strength) takes the form: 

h; = gx cot B 

( 

c&t + i&&bL + QRypqQR 

> 

+gstme cqi&j; 

> 
(31) 

i 

where the sum extends over all first and second generation quarks. If h2 > hl the 
dominant coloron mediated interaction takes the form of eq.(22) provided we identify: 

(32) 

Let is now ask what condition on 0 implies dynamical symmetry breaking through 
the formation of a top condensate. The scale at which the four fermion interaction 
softens to a gauge boson exchange is given by the mass of the coloron MB, and we 
may treat the effective interaction as a four-fermion form at all scales p < MB. 
Therefore, in the large-N approximation the gap equation can be written for the 
spontaneous formation of the tou-condensate with a momentum cut-off taken to be 

g; N cots e 
mt = mt f,+j,f2, [ti - m:Wf;lm:)] (33) 

and the existence of the condensate implies: 

g;Ncot=e N 

ai+ 
>l or -p( MB) Cot’ 0 1 1 (34) 

where (~3 = gi /4*. 

On scales below the MB we expect that the analysis of ref.[5] holds. If MB >> Mw 
then to have an acceptable top mass we must fine-tune B so that ga3(MB) cot2 ,4 x I 
to a hi&h precision. It is also crucial that the spectator Q be sufficiently heavy so 
that a $Q condensate does not form (the custodial sum leads to problems with 
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extra unwanted Goldstone bosom and may ultimately break U(~)EM). For a heavy 
fermion in the gap loop a sufficient condition that no breaking occur in this channel 
is: 

fi > mtl(M~ log(M&t)) (35) 

provided the mixing angle is fine-tuned to produce the low mass top condensate. 
Essentially this condition insures that Q decouples and the associated quadratic di- 
vergence becomes AZ - M$ , and the interaction has insufficient strength to drive the 
condensate. 

We note that x has been estimated in this scheme and, contrary to the general 
arguments of Hasenfratz et al. , it is found to be small, of order 0.1. For lack of 
space we must refer the reader to ref.[l2], and the Appendix, for a discussion of the 
size of x in these models. The approximation of the topcolor dynamics by an NJL 
model is certainly not established, and much work is required to illuminate the full 
dynamics. Since NJL implies a second order phase transition, one might study (Et) 
as the coupling constant cos B is varied for fixed M B. If lattice studies can illuminate 
the behavior it would quite interesting, since we otherwise have no completely reliable 
methods. 

In related works, possible horizontal interactions have been considered by T. K. 
Kuo, et al. , and a V( 1) version of this scheme has been developed by R. Bonisch, and 
independently by M. Lindner and D. Ross .I”. The same estimate of x is expected to 
hold in these schemes as in ref.[l2]. 

5. Conclusions 

The main theoretical ideas we have discussed revolve around the notion that 
conventional quarks or leptons play a fundamental role in the dynamical symmetry 
breaking of the electroweak interactions. In particular, this provides in the minimal 
scheme a raison d’etre for the existence of a heavy top quark with a mass of order 
the weak scale. The predictions of the minimal scheme are completely robust, and 
very insensitive to the details of the new pairing interactions. The price we pay in 
such a scheme is the necessity of fine-tuning, which provides the large log(A’/m:), 
and which ultimately controls the predictions of the model through the infrared fixed 
points. 

Topcolor is a new idea also. We emphasize that this is not equivalent to an 
e&ended technic&r acheme for two reasons: (a) there is no unbroken QCD-like 
subgroup in this scheme, and (b) the topcolor interaction is a broken gauge theory 
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but sufficiently strong to drive the formation of a chirsl condensate. I believe that 
the electroweak symmetry breaking involves a new interaction with these properties, 
albeit not necessarily topcolor, and as such such contains a new previously unseen 
dynamics. 

The predictions of the minimal scheme of ref.[5] yield a top mass of order 230 
GeV, which is large compared to current experimental implications through radiative 
corrections in the electroweak theory. Near future experiments at CDF and DO will 
decide the ultimate fate of the minima top-mode standard model. Nonetheless, this 
has compelled us to consider the supersymmetric scheme, which allows mr > 140 GeV, 
and the fourth generation scheme, which does not predict mt. Both of these schemes 
have their advantages and flaws. Primarily, they lack the simplicity of the minimal 
scheme, but they illustrate the fact that the presence of extra degrees of freedom will 
generaily modify the predictions of the minimal scheme, while the general idea of 
conventional quark and leptons condensates is preserved. There is much more to be 
done on the theoretical side in this avenue. 



-1% FERMILAB-Pub-92/19-T 

6. Appendix 

The loops that yield 
only upon the kinematic 

2~ in the NJL model have no t-dependence, and depend 
variable s. As such, they refer to a point-like boundstate 

wavefunction on scales p < A. However, in any realistic theory we expect there to be 
modifications to this simple picture, and in general there will t-dependent amplitudes 
that contribute to the wave-function, hence giving corrections to the naive NJL result 
for 2,. We should tackle this problem in a full large-N Bethe-Salpeter analysis. 
Presently we will make a reasonable guess as to the order of magnitude of these 
corrections. Let us consider the simplest contribution to such a correction. 

For example, we can view the NJL loops as being softened into coloron exchange 
box-diagrams as in Fig.(S). An upper limit on the size of the t-dependent effects 
might to take an extreme assumption for the Higgs wave-function and assign all 
of the incoming momentum on one leg, routing it through the colorons into the 
oppomte outgoing leg. That, indeed, gives an effect of order the present one. A more 
sophisticated estimate involves making an d-wave projection of the box-diagram onto 
the incoming I = 0 Higgs wavefunction. We shall carry out such an estimate at 
present. (This appendix is included for illustrative purposes only with this preprint, 
and will not appear in the published conference proceedings.) 

Consider the coloron box diagram of Fig.(S): 

PI 

PI Ix 

PI-9 

P.+P 

Figure (5): Planlu box diagram for computation of topcolor corrections to 

ZE 

The numerator structure is of the form (the 4’s and q’s are external spinors): 

PqL (%(fi +hh);; 1 1 +L !%i (-f(jS - #)7y)y; 

where 
1 qR (36) 

p = g4 cota e (37) 
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which can be rearranged to the form: 

PN 
- -y- TrK$ + ~6 )(!I - PZ)I &.r,$h w”;~R (38) 

The overall coefficient here is the leading large-N part; the crossed box diagram is 
subleading. Hence, we compute the leading-N contribution as: 

Boz = -y J”” ‘MC +A )(P - ~~11 
(27~)~ ((k +p# - mT)((k - P# - m:)((k + q)l - M;)(kz - M;) 

(391 
By comparison, in the NJL model we have the analogous result: 

\ I 

~oo~=-!.$ J” TO + ~6 )(C - rW1 
B P*)’ (W + p1)’ - m:)((k - P# - 4) (40) 

which is obtained by pinching out the heavy gluon lines. The external lines will be 
taken to be massless: 

p: = p: = 0; qz--2q.p1 =o; pa + 2q . $9 = 0; Q.(Pl +Pz) = 0. (41) 

and thus: 
8 = 2PI . ps; t = qz (42) 

Therefore the box becomes: 

k’+k.(p,-ps)-~pl.pz 
= -2PN $$((k+p,)‘-mm:)((k-p# -n~:)((k+q)~-M;)(k’-M;) (43) J 

Let us now collect the terms associated with the denominators containing mt. Define 
a shifted loop momentum: 

1 = k + zpl - (1 - z)px; and A’ = m; - z( 1 - r)s (44) 
so we have: 1 

Box = -2PN J J dz - 
0 ($4 (II i’~s;!&z;;)z (45) 

+ (21. (n + (1 - =)Pz - ?1))(21. ((1 - “)pl - zpl)) 
(P - M;)a 1 



-2o- FERMILAB-Pub-92/19-T 

where we have expanded to leading order in powers of l/M; and dropped terms odd 
in 1. We now collect terms and we replace 1,1, + g,,,1’/4: 

Box = -2N dx l' J 
x 

2r( 1 - 2)s _ P(q2 + 6z(l - z)a) 
l+ (P-M;) 2(11 - MA)2 

I 
Wick-rotating to a Euclidean momentum entails: 

Box = 
i,0N 1 
-iGo J J dx du u 

u + z(l- +)s 

(u + A”)2(u + M;)a 

(46) 

x 1 _ 22( 1 - 1)s + u(t + 6r(l- x)s) 

(u+ Mi) 2(u + Mp 1 
We now project this amplitude onto the s-wave component. First, the scattering 

angle, is given by: 

cosB=l+~; 
8 de= Jz$&l (46) 

and the I= 0 partial wave is projected by the integral: 

(Fj=;Jo de F(cos8) = -1 J -‘ 7r 0 J& JYl + W8) (49) 
Hence: 

BoxI,=, = (50) 

We now perform the integrals yielding the results for the leading terms in the 
s/M:, << 1 limit: 

t(l- r)(3ln(Mi/A’) - 6 + l/2) - l/24 (51) 
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We perform the E integrals to obtain in the limit s >> m:: 

iln(M$/(-8)) + 5/6 - 1 t l/12 - l/24 >I 
- l/8}] (52) 

where we identify s = -p”. By comparison the NJL loop is given, with a cut-off of 
A: 

Loop = 
iplv 

87rzMA 
A’+ +(I - r)s(3ln(h’/A”) - 2)] (53) 

Therefore, we infer the induced wave-function normalization constants for the Higgs 
boson: 

Z 

Z R NJL = & {h(Mi/$) + I} (55) 

Typically the block-spin renormalization group has been used to obtain Z,: 

Z am = &ln(Mi/$) 

We see from the comparison that we must choose A” = Mi. The terms proportional 
to 8 then define the composite Higga boson wave-function renormalization constant. 
There is a small constant difference between the NJL loop result and the box diagram. 
We thus find: 

N 
ZEb=zzfRG- 1 - 

0 4 16772 
This is a 6ms.U correction, corresponding to x x . i/S in eq.(17) and eq.(20). 
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